Какие периоды питания различают у растений. Питание растений

ПР-это процесс поглощения из внешней среды и преобраз-я питат. в-в в соед-я, необходимые для жизнед-ти растений. Существует два типа пита-ния: автотрофный и симбиотрофный. В основном преобл. автотрофный, при к-ром растения сами обеспеч. себя неорг. эл-тами, N 2 и СО 2 . При симбиотрофном ПР растения тесно сожительствуют с другими организмами (симбионтами). Симбиоз высш. раст. бывает микотрофный и бактериотрофный.

Питание растений – усвоение неорганических соединений из окружающей среды и превращение их во внутренний фактор растительного организма в качестве органического вещества, используемого на образование структуры растений и на энергетическое обеспечение их функций. Существует два типа питания: автотрофный – усвоение минеральных солей, воды и углекислого газа и синтез из них органического вещества – и гетеротрофный – использование организмами готовых органических веществ. До начала 19 в. Существовала гумусовая теория, согласно которой сухая масса растений образуется из почвенного гумуса. Открытие фотосинтеза Сенебье и мине-рального питания Либихом выявили два основных источника питания – воздушный и почвенный. Фотосинтез – основной процесс, приводящий к образованию орг. вещества. Солнечная энергия в зеленых растениях, содержащих хлорофилл, превращается в химическую, используемую на синтез углеводов. Интенсивность процесса и накопление сухого вещества зависят от освещенности, со-держания углекислого газа, обеспеченности влагой и элементами питания. Растения усваивают углекислоту, поступающую из атмосферы, а основным путем поступления в растения воды, азота и зольных элементов служит корневое питание. Элементы поглощаются из почвы активной поверхностью корневой системы в виде ионов. Растения усваивают их не только из раствора, но и из поглощенного коллоидами состояния. Благодаря растворительной способности корневых выделений растения активно воздействуют на твердую фазу почвы, переводя поглощенные ионы в доступную форму.

Питание – это поступление минеральных веществ из окружающей среды в растение, где они используются для синтеза сложных органических соединений. Все задачи, по мнению Тимирязева, сводятся к определению и строгому выполнению условий питания растений.

Типы и виды питания:

1) Автотрофный – самостоятельное поглощение неорганических веществ и первичный синтез необходимых органических веществ.

2) Симбиотрофный – высшее растение тесно сожительствует с другими организмами (симбионтами)

наблюдается взаимное использование продуктов для питания.

Микотрофный (растение + грибы)

Бактериотрофный (растение + бактерии) особое значение Rhizobium + растение

Растения питаются через листья (воздушное питание) и через корни (корневое питание).

Воздушное питание = фотосинтез = ассимиляция СО2. Корневое – усвоение корнями воды и минеральных солей, а также незначительного количества органических веществ (Витамины, аминокислоты и др.) Эти виды питания тесно связаны, нарушение одного вызывает снижение интенсивности другого.

Питание растений – основополагающий процесс, благодаря которому обеспечивается не только собственное их существование, но и жизнь, процветание всех гетеротрофов, и прежде всего, благодаря присущим растениям процесса углеродотрофии и азотрофии. У растительных организмов питание особенное, что можно проиллюстрировать следующей схемой:

Почвенное (корневое) питание – это, с одной стороны, потребление воды с помощью корневой системы растения. Вода является важнейшей составной частью последних. Растения произошли из воды и всегда стремятся к воде.

Почвенное (корневое) питание – это, с другой стороны, потребление и усвоение необходимых минеральных солей.

Анализ элементарного состава растений показывает, что они в среднем содержат С - 45%, О - 42%, Н - 6,5%, N - 1,5% на сухую массу. В процессе сжигания эти элементы окисляются и улетучиваются. Остается зола. Растения черпают углерод из СО2 воздуха, кислород и водород из воды. Кислород также вовлекается в обмен в процессе дыхания. Азот и элементы, входящие в состав золы, поступают в растения через корневую систему из почвы в основном в виде минеральных соединений. Зеленые растения - автотрофы не только в том смысле, что источником углерода у них является СО2, но и в том, что они используют для построения органических веществ другие элементы в форме минеральных соединений. Питание растений азотом и другими необходимыми элементами привлекало издавна внимание.

Питание - процесс поглощения и усвоения из окружающей среды необходимых для жизни веществ.

Процесс почвенного питания

Процессы поступления в организм растения растворов минеральных веществ из почвы и усвоения их клетками называют почвенным питанием. У большинства наземных растений оно происходит с помощью корня. В зоне всасывания корневые волоски поглощают воду и растворенные в ной минеральные вещества из почвы. Они тесно соприкасаются с комочками почвы и почвенным раствором. Слизь, образующаяся на поверхности корневых волосков, растворяет минеральные частицы почвы, облегчая их поглощение.

Поглощенные корневыми волосками вода и минеральные вещества поступают в проводящую зону корня. Здесь по сосудам проводящей ткани они под давлением поступают в стебель. Это давление называют корневым. Наличие корневого давления доказывает «плач» растений - выделение сока из поврежденного или перерезанного стебля. Особенно интенсивно сокодвижение происходит весной. У многих комнатных растений рано утром можно наблюдать выделение капелек воды но краям . Это явление тоже свидетельствует о корневом давлении.

Зависимость почвенного питания от внешней среды

Работа корней зависит от температуры почвы. При низких температурах всасывание воды корнями ослабевает и даже приостанавливается, корневое давление надает. Па почвенное питание растений оказывает влияние состав почвы, наличие в ней минеральных веществ. Установлено, что соединения азота, фосфора, необходимы растениям в больших количествах. Так, растения пшеницы на площади 1 га поглощают более 40 кг азота, 20 кг фосфора, 25 кг калия. Недостаток азота задерживает рост растения. При нехватке фосфора задерживается цветение и . Такие элементы, как железо, медь, цинк и др., требуются растению в очень малых количествах. Однако недостаток любого элемента в питании растений отрицательно сказывается на его развитии. В естественных природных условиях поглощенные из почвы минеральные вещества частично возвращаются с упавшими листьями. На полях, занятых сельскохозяйственными растениями, почва истощается, так как питательные вещества забирают с урожаем. Поэтому на поля весной и осенью вносят удобрения, обеспечивающие питание растений.

Особые способы питания растений

Некоторые растения приспособились восполнять недостаток элементов питания своеобразным способом - получать питательные вещества от других живых организмов.

Как известно, у растений два способа питания: фото- синтез или воздушное и минеральное. Фотосинтез или воз- душное питание осуществляется листьями. Поглощая из воз- духа углекислый газ и квант света, а из почвы воду, расте-ния синтезируют глюкозу и другие органические соединения. Именно за счет этого типа питания создается вся огромная биомасса растений на земном шаре.

Второй тип — почвенное или минеральное питание. Кор- ни растений поглощают из почвы воду и минеральные ве- щества. Поскольку в растении содержится большое количе- ство различных элементов (почти 3/4 таблицы Менделее-ва), а извлекают они их, в основном, из почвы, то этот вынос нужно восполнять. Содержание элементов в растении неодинаково. По это- му показателю их можно разделить на три группы.

Больше всего в растении макроэлементов. Это азот (N), фосфор (Р), калий (К), сера (S), кальций (Са), магний (Мд) и некоторые другие.

Значительно меньше концентрация микроэлементов — марганца (Мп), меди (Си), кобальта (Со), молибдена (Мо), бора (В), цинка (Zn). Тем не менее они играют очень важную роль в обмене веществ растений.

Совсем ничтожно содержание в растениях ультрамик- роэлементов — золота, серебра, радиоактивных элемен- тов. Для интерьерных растений одним из факторов, огра- ничивающих рост и цветение, может стать недостаток эле- ментов минерального питания. Количество почвы в горшках не слишком велико, а корневая система многих растений поверхностная. Поэтому цветовод оказывается перед выбо-ром: либо соответствующий горшок с довольно небольшим объемом почвы (не забудьте также про дренаж, который уменьшает «полезный объем») или горшок более крупный, но тогда появляется опасность закисания почвы. К тому же для размещения растений потребуется больше места. По-этому одной из главнейших забот является создание и под- держание оптимального режима минерального питания.

Многие элементы выполняют в растении особые, толь- ко им присущие функции.

Азот

Входит в состав молекул, которые определяют существо- вание всех живых организмов — белков и нуклеиновых кис- лот. Для растений особенно важно то, что он участвует в образовании зеленого пигмента листа — хлорофилла и осо- бых соединений, контролирующих интенсивность роста.

При подборе готовых смесей удобрений следует учи- тывать, что при избытке азота растения будут формировать большую вегетативную массу, но у них задержится цвете-ние. Поэтому для тех видов, которые используются в каче-стве декоративно-лиственных, можно рекомендовать удоб рения с повышенным содержанием азота, а для красиво цветущих его концентрация должна быть существенно ниже.

Фосфор

Количество в почве фосфора по сравнению с азотом значительно меньше. Соединения его трудно растворимы в воде и поэтому менее доступны для растений, хотя с другой стороны, уменьшается опасность вымывания их из почвы при поливах. Легче всего фосфор усваивается в форме со-лей ортофосфорной кислоты

Совершенно особая роль принадлежит фосфору в энер-гетике клетки. Основная молекула — носитель энергии в клет- ке — АТФ, накапливает и передает энергию именно благо-даря фосфору. Он входит также в состав нуклеиновых кис- лот, некоторых белков. Входя в форме дополнительной груп- пы в молекулу липидов (жироподобные вещества), он обес- печивает стабильное соединение белков и жиров в погра- ничных слоях клетки — мембранах. Фосфор стимулирует цветение растений.

Калий

Также один из основных элементов питания растений. Его запасы в почве на порядок выше, чем фосфора и азота вместе взятых. Однако наиболее доступными для растений являются легко растворимые соли калия, содержание кото- рых в почве составляет всего около 1 % от общих запасов, что явно недостаточно для нормального питания растений. Калий, в отличие от азота и фосфора, не входит в сколько-нибудь заметных количествах в органическое веще-ство клетки. В основном, он определяет физико-химические свойства клетки, влияет на скорость протекания в ней био- химических реакций, играет важнейшую роль в поступлении воды в клетку и ее передвижении по растению. Один из глав- ных физиологических процессов в растении — фотосинтез. Роль калия в нем трудно переоценить. Он ускоряет образова- ние крахмала и его передвижение, регулирует работу устьиц, через которые в растение попадает углекислый газ. В присут- ствии калия повышается устойчивость растений к поврежда ющим факторам среды: пониженным температурам, сухости воздуха и почвы, заражению грибами и вирусами. Калий осо-бенно необходим в период цветения. Он положительно влия- ет на количество формирующихся цветков и соцветий.

Сера

Входит в состав молекул белка. Они могут осуществ- лять свои внутриклеточные функции только находясь в стро- го определенной форме. Именно аминокислоты, содержа- щие серу, определяют необходимую структуру белковой мо- лекулы. Сера участвует в построении многих ароматичес-ких веществ. Некоторые из них обладают антимикробным и антибактериальным действием. Ряд витаминов так же со-держат атомы серы. Сера в достаточных количествах нахо- дится в качестве сопутствующего элемента в других видах удобрений, в частности азотных и калийных, поэтому нет нужды вносить ее специально.

Кальций

Стабилизирует многие внутриклеточные структуры. Со- седние клетки объединяются в единое целое именно благо- даря солям кальция. Он необходим для работы корневой системы. В отличие от азота, фосфора и калия, которые легко передвигаются по растению и при недостатке в почве могут перемещаться в молодые побеги и листья, кальций прочно закреплен в клетке и при его недостатке первыми страдают как раз самые важные молодые органы растения. Кальций уменьшает кислотность почвы, поэтому для видов, которые не выносят подщелоченных почв, его надо вносить с боль-шой осторожностью.

Магний

Входит в состав хлорофилла и принимает активное уча-стие в процессе фотосинтеза, обеспечивая поглощение све- та листом. Не менее важна его роль, как активатора обмен- ных процессов в клетке. Наряду с кальцием он является одним из стабилизаторов клеточных структур. Оказывает благоприятное действие на формирование генеративных органов, т.е. цветков и соцветий.

Железо

Непосредственно в состав молекулы хлорофилла не входит, однако необходимо для его синтеза. Именно поэто- му при недостатке железа наблюдается пожелтение листь- ев, так называемый «железный хлороз». Очень важная роль принадлежит железу в тех процессах, где происходит запа- сание энергии, связанное с перемещением электрона — дыхании и фотосинтезе.

Микроэлементы

Выступают как активные участники обмена веществ.

Бор

Абсолютно необходим для нормального роста растений. На кончиках побегов и корней есть особые группы клеток, которые делятся на протяжении всей жизни растения. Они называются точками роста. Их работу регулирует наряду с другими факторами и бор. Если в почве не хватает бора, он не может переместиться в точки роста из других органов, поэтому рост растений сразу замедляется.

Марганец

Принимает участие в процессе фотосинтеза, как при ус- воении углекислого газа, так и при выделении кислорода. Растения поглощают только определенные соединения азо-та, поэтому должно произойти превращение мало полезных форм в те, которые усваивает растение. В этих превраще-ниях принимают участие марганец, железо и особенно ак-тивно молибден. Марганец также поддерживает оптималь- ное соотношение элементов питания в корневой системе.

О роли молибдена в азотном обмене уже было ска- зано. Он также способствует накоплению витамина С, кото-рые необходим растениям не меньше, чем человеку. Опре- деленная роль принадлежит молибдену в регуляции деле- ния клеток.

Медь

Участвует в преобразовании энергии в клетке. Косвенным образом регулирует рост растений, повышает их устойчивость к колебаниям температуры и некоторым заболеваниям.

Цинк

Обеспечивает нормальное использование растениями углекислоты в процессе фотосинтеза, стимулирует образо- вание веществ, усиливающих интенсивность роста, оказы- вает существенное влияние на усвоение, передвижение и превращение фосфора в растениях. В случае недостатка или отсутствия отдельных элементов в почве, а также пере-хода их в недоступное для растений состояние, нарушается нормальный ход жизнедеятельности, снижается интенсив-ность роста, нарушается развитие, например, затормажива- ется цветение, уменьшается количество и снижается качество семян. Визуальная диагностика, т. е. определение по внешне- му виду растения, какого элемента ему недостает, обеспечи-вает раннюю коррекцию условий минерального питания.

Признаки недостаточности отдельных элементов

Азот

Листья и стебли приобретают светло-зеленую или ли монно-желтую окраску. Первыми теряют нормальную окраску старые листья т. к. азот легко передвигается по растению и при его недостатке в почве идет отток из старых органов в молодые. При длительном отсутствии азота в почве на лис- тьях появляется темно-коричневая кайма, края заворачива- ются, т.е. проявляется картина «ожога», после чего листья опадают. Наблюдается торможение роста растений.

Фосфор

Листья и стебли приобретают темно-зеленую, иногда с фиолетовым или багровым оттенком окраску. Задерживает-ся появление цветков и позднее созревают семена. Призна- ки сначала проявляются на нижних (старых) листьях. Фосфор может находиться в почве в достаточном коли- честве, но закрепляться в недоступной для растений форме. Такое явление наблюдается при избытке в почве кальция, магния, цинка.

Калий

На листьях появляется «крапчатость» — мелкие тем-ные пятна отмерших тканей рассеяны по листовой пластин- ке. Первые признаки голодания отмечаются на верхушках и по краю старых листьев. Рост листовой пластинки неодно-роден, лист становится морщинистым и может приобрести форму чаши. Края листа темнеют и заворачиваются, как при ожоге. Иногда листья приобретают бронзовую окраску. По- вышается восприимчивость к болезням.

Магний

Наиболее типичен хлороз, т.е. осветление листовой пла- стинки. Начинается обесцвечивание с краев листа и захва- тывает межжилковое пространство. Формируется так назы- ваемый «мраморный» хлороз. Обесцвечивание бывает на- столько сильным, что листья становятся почти белыми. Иног- да на листьях появляются чередующиеся белые и светло- желтые полосы на зеленом фоне. Листья могут опадать.

Кальций

Признаки голодания проявляются сначала на молодых листьях, так как этот элемент прочно закреплен в клетках и плохо передвигается по растению. Молодые листья приоб- ретают темно-зеленый цвет, скручиваются и отмирают. От- мирают также и молодые почки, как верхушечные, так и бо- ковые. Края листа сморщиваются. Корни ослизняются.

Железо

Наиболее типична картина хлороза — пожелтение мо-лодых листьев. В отличие от других видов хлороза «желез- ный» более равномерный и охватывает всю листовую плас- тинку. Хлороз не всегда определяется недостатком железа в почве. Оно может быть в связанном состоянии, особенно, если в субстрате имеется избыток магния или углекислых солей кальция, натрия и калия.

В отсутствии серы все растение приобретает светло- зеленую окраску, жилки становятся желтыми. Иногда наблю- дается «ожог», но в отличие от недостатка азота листья ос- таются на растении.

При недостатке марганца хлороз проявляется между жилками, а сами жилки становятся темно-зелеными, пятни-стость охватывает весь лист.

Несмотря на то, что в растениях не обнаружены орга- нические соединения, в состав которых входит бор, его не- достаток очень серьезно нарушает многие физиологические процессы. Затормаживается рост, отмирают молодые поч- ки. Лист осветляется в основании. Понижается устойчивость растений по отношению к грибам, бактериям, вирусам.

Минеральные удобрения

Азотные удобрения

Наиболее богатое азотом, легко растворимое в воде, сыпучее удобрение — нитрат аммония NH 4 NO 3 , содержа- щее 34% азота. Натриевая (чилийская) и кальциевая селит- ры NaNO 3 и Ca(NO 3) 2 , соответственно — 16 % и 17% азота. Самое богатое азотом удобрение — мочевина или карба-мид. Он содержит до 46% азота в аммиачной форме.

В качестве азотного удобрения используется также вод- ный аммиак или аммиачная вода.

Фосфорные удобрения

Простой (20%) и двойной (до 50%) суперфосфат срав- нительно неплохо растворяются в воде и являются основ-ными фосфорными удобрениями.

Калийные удобрения

Применяют в форме солей серной или соляной кислот. Однако, в связи с более интенсивным поглощением калия, в почве накапливаются анионы — хлорид и сульфат. Такие соли называются физиологически кислыми. Следует отметить, что интерьерные растения особенно чувствительны к избытку хлора. Поэтому более подходящим для них удобрением яв- ляется сернокислый калий, содержащий до 50% калия.

В цветочных магазинах имеется множество самых раз- личных удобрительных смесей. «Растворин» содержит ос-новные элементы питания (N, Р, К) в различных соотноше-ниях и почти все микроэлементы. «Универсал» изготовлен на основе торфа. Азот, фосфор и калий присутствуют в рав- ных долях, плюс магний и все микроэлементы. «Кристал лон» выпускается для различных периодов жизни растений и содержит макро- и микроэлементы в наиболее доступной форме. Перед покупкой готовых удобрений внимательно про- читайте рекомендации о времени их внесения. Так для мо- лодых растений целесообразно использовать «Растворин», а в период цветения более полезным будет «Фосфатное», которое применяется как жидкая подкормка и содержит око- ло половины фосфора и 1/3 калия. «Исполин» создан на основе биогумуса, является универсальным удобрением, со-держащим все макроэлементы. Совершенно новые принци- пы использованы при создании «Гербалина». Это единствен- ный в мире препарат на основе лекарственных растений. Кроме всех элементов минерального питания, он содержит легко усваиваемые растением органические соединения, и од- новременно выполняет роль регулятора роста. Для внекорне- вой подкормки его применяют в концентрации 4-4.5 %.

В настоящее время имеются многочисленные смеси микроудобрений. Иногда в них наряду с микроэлементами присутствуют стимуляторы роста. Таковы «Мульти — 7», «Цветочек», «Радуга», «Виртан-микро», «Идеал». Все эти средства выпускаются в концентрированном виде и расфа- сованы в стеклянные или пластиковые бутылочки с закру-чивающимся колпачком. Так как в домашних условиях не всегда можно точно отмерить необходимое количество кон- центрата, рекомендуется готовить удобрительные раство- ры, отмеривая необходимый объем концентрата колпачком. «Радуга» — экологически чистый препарат, повышает устой- чивость растений к патогенам. Растворив 1 колпачок кон центрата в 1 л воды, вы получите прекрасное средство для замачивания семян и укоренения черенков, если раствор сделать на два литра, то получается весьма эффективное средство для внекорневой подкормки — опрыскивания лис- тьев. «Идеал» изготовлен с использованием натурального органического биогумуса — продукта жизнедеятельности дождевых червей. Регулируя концентрацию раствора, его можно применять для замачивания семян и укоренения че-ренков (4-5 мл на 1 л воды), внекорневой подкормки и удоб- рительных поливов (6-8 мл на 1 л воды). «Пальма» приме- няется не только для различных видов пальм, но и драцен, фикусов. Для низкорослых растений (высотой не более 0.5 м) вносят по 200 мл раствора, для более крупных (до 1 м) по 300 мл, а для наиболее крупных (более 1.0 м) по 400 мл один раз в месяц. Необходимую концентрацию получают, растворяя соответственно 2, 3 или 4 колпачка концентрата в 1 л воды.

Очень перспективно удобрение «AVA», особенно его гра- нулированная форма. Оно содержит такие макроэлементы, как Р, К, Са, Мд, кремний и микро — бор, марганец, медь, кобальт, молибден. Употребляется в виде слабого водного настоя (1 ст. ложка на 1.5-2.0 л воды). К тому же это удобре- ние экологически безопасно.

Новинка — удобрительные палочки «Азалии» и «Фло ретта -2». В состав «Азалии» входят азот (5%), фосфор (10%) и калий (10%) и все микроэлементы. Это удобрение следует применять на кислых почвах. «Флоретта-2» даст луч- ший эффект в период активного вегетативного роста, так как содержание азота в этом удобрении выше чем фосфора и калия. Достоинством данного типа удобрений является про- стота их применения: вы помещаете палочку у края горшка, и необходимое количество питательных веществ постепен- но вымывается из нее поливной водой

Ранее уже упоминался Гербалин, совмещающий свой- ства удобрения и стимулятора роста. Однако это не един-ственный препарат такой направленности. «Апион», удоб рение длительного действия, помещенное возле корней, постепенно выделяет удобрения и стимуляторы роста в со- ответствии с потребностями растений. Для горшечных куль- тур подходит «Апион — 50». Аналогичное действие оказы-вает и отечественный препарат «Эпин», перед применени- ем одну ампулу растворяют в 2 литрах воды. Цветоводы-любители используют разные методы обработки эпином: вы- держивают в растворе черенки или поливают почву с укоре- няющимися черенками. Это соединение оказывает также и защитное действие против неблагоприятных факторов внеш- ней среды, защищает растения от стресса, оздоравливает и омолаживает слабые растения.

Весьма перспективны «питательные батарейки», не- большие контейнеры, похожие на плоские коробочки. Их можно подобрать по диаметру донышка горшка. Внутри та-кого контейнера находятся ионообменные смолы, «заправ-ленные» удобрениями, которые постепенно выделяются в субстрат по мере необходимости. Одна такая батарейка ра- ботает около года.

Несколько лет назад учеными был разработан гидро-гель «подземный родник». Это миниатюрная губка, имею-щая вид полупрозрачных гранул. При поливе, набухая, они способны удержать достаточно большой объем воды, а за- тем постепенно отдают ее в субстрат. Земельная смесь, в которую внесены гранулы, долго не уплотняется, поливать растения можно не более 1-2 раз в месяц. Предваритель-ное насыщение гранул удобрениями гарантирует стопроцен- тное их усвоение растениями. Их можно смешивать с поч- вой перед посадкой растений, или сделав небольшое углуб- ление у края горшка, поместить туда гранулы.

Самые новые разработки в области создания удобре- ний — это капсулированные удобрения длительного дей- ствия марок Осмокот (Osmocota) и Плантакот (Plantacot). Они представляют собой определенный набор необходимых растению веществ, помещенных в специальную, проницае- мую мембрану-капсулу. По своим свойствам она напоминает мембраны, окружающие растительные клетки, а элемен- ты, сконцентрированные в ней, выделяются в грунт посте-пенно: за период от 3-4 до 12-14 месяцев. Оболочка капсулы легко разлагается почвенными организмами. Из этой формы удобрения усваиваются практически полностью (до 90%).

Обеспечить растения необходимым количеством пита- тельных веществ можно, используя внесение удобрений в субстрат или применяя внекорневую подкормку. Однако, в оранжереях, зимних садах, комнатах этот способ имеет ог- раниченное применение.. Дело в том, что через несколько часов после внекорневой подкормки, следует обмыть лис- тья от остатков удобрений, иначе они выступают в виде не- красивых белых пятен, снижая декоративность растений, а иногда и вызывая появление признаков неинфекционных

болезней.

Следует з аметить, что эффективность применения удобрений зависит от многих факторов, в том числе и от уровня рН. Например, фосфор практически не усваивается при повышенной кислотности (рН <5), так как прочно связы- вается с железом, в то же время в щелочных субстратах (рН>8), он осаждается в виде фосфорных солей кальция. Высокий уровень рН снижает поступление в корни цинка, меди, бора и марганца. Самые важные макроэлементы — R N, К легко передвигаются по растению и при недостатке их содержание прежде всего уменьшается в нижних старых листьях. Это происходит не только из-за того, что питатель-ных веществ не хватает в почве, но и потому что они актив- но перекачиваются в молодые листья. Поэтому, если вы за- поздаете с подкормкой, растение может сбросить старые

листья.

Применение удобрений необходимо, чтобы стимулиро- вать рост и цветение растений. Однако важно не переусер- дствовать. Дело в том, что «перекормив» ваших питомцев, вы создадите для них неблагоприятные условия питания. Высокая концентрация ионов приводит к явлению «физио-логической сухости» — затрудненному поглощению воды корнями. Помимо этого сами ионы могут оказать токсическое, отравляющее действие на растение. Физиологическая сухость может быть следствием пониженной температуры. Холодные полы, сквозняк из не заклеенных окон вполне спо- собны создать подобную неприятность. Чтобы ее избежать, на подоконнике установите невысокие подставки, крупномер- ные растения разместите на низких столиках, в контейне-рах, на жардиньерках. Прекрасный результат дают теплые полы, если, конечно, у вас хватит денег, чтобы их устроить.

Органические удобрения

В отличие от минеральных, органические удобрения ис- пользуются в комнатном цветоводстве не так активно. Это определяется как особенностями субстрата, так и потребнос- тями самих растений. Тем не менее, одно из лучших органи- ческих удобрений— коровий навоз (коровяк) доволь- но активно вносят в некоторые субстраты. Он обогащает по- чву азотом, фосфором, калием, кальцием. Питательные ве- щества освобождаются из него постепенно, обеспечивая рас- тение в течение несколько месяцев. Чаще всего вносят сухой измельченный коровяк совместно с суперфосфатом.

Птичий помет

Также является отличным азотным удобрением, но при- менять его надо весьма осмотрительно. В больших дозах он токсичен для растений. Поэтому, применяя это удобре-ние, его надо разводить в гораздо большей степени, чем коровяк, не в соотношении 1:10 (для коровяка), а в соотно- шении 1:25.

Для некоторых растений иногда в субстрат добавля- ют такие органические удобрения, как роговые стружки, ро-говую, костную и кровяную муку.

Роговые стружки

Применяют в качестве фосфорного удобрения. Они мед- ленно разлагаются в субстрате, постепенно выделяя пита- тельные вещества. Обычно к 30 частям субстрата добавляют 1 часть стружек. Реже их применяют в жидком виде. Для этого 10 граммов стружек замачивают в 1 л горячей воды, раствор выдерживают 2-3 недели, время от времени пере-мешивая. По окончании брожения раствор процеживают и используют, разбавляя в 2 раза.

Роговая мука

Представляет собой тонко измельченные в порошок ко- пыта и рога животных. Применяют в качестве фосфорного удобрения. Действует быстрее, чем роговые стружки. При горшечной культуре 1 часть муки смешивают с 30 частями почвенной смеси. Для приготовления жидкой подкормки 1 г муки заливают 1 л горячей воды, дают перебродить в тече- ние 10-12 дней, процеживают и разбавляют при поливе в два раза.

Костная мука

Применяется так же как фосфорное удобрение. Она со- стоит из органических и минеральных соединений. Главная ее часть — фосфат кальция, который медленно разлагает-ся, восполняя недостаток фосфора в почве.

Для удобрительного полива 10 г муки заливают стака- ном горячей воды. Ежедневно 2 раза перемешивают и че- рез 7 дней процеживают. Две чайных ложки этого маточного раствора разбавляют стаканом воды и поливают растения. Чаще всего ее применяют для крупномерных кадочных рас- тений — пальм, фикусов, миртов.

Кровяная мука

Представляет собой полное минеральное удобрение, но применяется, в основном, как азотное. Для интерьерных ра- стений ее ценность заключается в быстром действии.

Чаще всего ее вносят в жидком виде. Один грамм зали- вают 1 л теплой воды, ежедневно перемешивают и приме- няют через 4-5 дней, разбавляя перед внесением в два раза.

Биогумус или вермикомпост

Представляет собой сыпучий крупнозернистый субстрат с частичками примерно 1 мм диаметром. Микроорганизмы биогумуса усваивают атмосферный азот, повышают его со- держание в почве. Применять это соединение лучше всего для декоративно-лиственных растений, так как азот стиму-лирует образование и рост листьев, но задерживает цвете- ние. Поэтому не стоит добавлять в субстрат более 10% био- гумуса. К недостаткам этого удобрения относится снижение рыхлости почвы, ее уплотнение. Лучшие результаты дает применение удобрительных подкормок: 50-100 г биогумуса разводят в 2-3 л теплой воды, перемешивают и поливают растения. Смесь можно оставить для настаивания в тече-ние 2-3 дней, за это время питательные вещества перейдут в раствор. Его сливают, а оставшийся осадок еще раз зали- вают водой.

Наиболее часто используемым субстратом для комнат- ных растений являются земельные смеси. Но в последнее время получили распространение и другие способы культи- вирования. В научных учреждениях, ботанических садах и промышленных оранжереях они известны уже давно, но в комнатном цветоводстве используются достаточно редко.

Водная культура — это выращивание растений на пита- тельных растворах. Преимущество метода в том, что расте-ния усваивают практически все элементы, содержащиеся в растворе. Однако он имеет и ряд недостатков, которые зна- чительно ограничивают его применение цветоводами-люби- телями. Как известно, в воде очень плохо растворяется кис- лород и корни растений, находящиеся в водном растворе, нуждаются в дополнительной аэрации. Для нее можно ис- пользовать небольшой компрессор. Дополнительных усилий требует и укрепление растений, т.к. корни лишены прочной опоры. Еще одна отрицательная черта обусловлена различ- ной скоростью усвоения элементов питания из раствора. Например, ионы, содержащие азот и калий усваиваются ра- стением очень быстро, фосфаты и сульфаты несколько мед- леннее, а целый ряд ионов долгое время остается в раство ре. Соли, содержащие ионы, которые усваиваются с неоди-наковой скоростью, могут вызвать изменение уровня рН пи- тательной смеси. Если они сдвигают рН к величине > 7, их называют «физиологически щелочными», если < 6 — «физиологически кислыми». Однако этой неприятности мож-но избежать, регулярно проводя смену питательного раство- ра. Кроме того, есть такие составы, которые в течение дли- тельного времени поддерживают постоянный уровень рН. Самой универсальной смесью является смесь Кнопа. Ее со- став в расчете на 1 литр воды, лучше дистиллированной: кальций азотнокислый, безводный — 1 г, калий азотнокис-лый — 0,25 г, калий фосфорнокислый однозамещенный — 0.25г, магний сернокислый безводный — 0.25 г, калий хло-ристый — 0,12 г, хлорное железо, 5% раствор — одна кап-ля. Если раствор готовят на водопроводной воде, железо можно не добавлять.

К сожалению, она достаточно быстро подщелачивает-ся. Этого недостатка лишена смесь Прянишникова. Она со- стоит из следующих солей: аммоний азотнокислый — 0,24 г, кальций фосфорнокислый, двухзамещенный — 0,172 г, каль- ций сернокислый — 0,344 г, магний сернокислый безводный — 0,06 г, калий хлористый — 0,16 г, железо хлорное — 0,025 г. В книге А. М. Гродзинекого и Д. М. Гродзинекого «Крат- кий справочник по физиологии растений» (Киев, 1978) мож- но найти множество вариантов питательных смесей.

Сосуд для выращивания растений в водной культуре обычно стеклянный, его легко мыть и в раствор не выделя- ются посторонние примеси. Чтобы на стенках и в питатель- ной смеси не появлялись бактерии и водоросли, сосуд сверху оборачивают плотной темной бумагой или тканью Особое вни- мание нужно обратить на крышку сосуда. В ней должен быть съемный сегмент, который позволяет вводить растение, не повреждая корней. Еще два отверстия предназначены для опоры, к которой привязывают растение, а во второе отвер- стие вводят резиновую трубочку от компрессора для продува- ния раствора.

Правила ухода за растениями

1. Объем сосуда подбирается в зависимости от разме-ров растения (для экземпляров высотой 20-30 см достаточ- но взять сосуд объемом 1 л, до 50 см — 1.5-2.0 л). Более
крупные растения не рекомендуется выращивать в услови- ях водной культуры.

2. Существует достаточно большой выбор питательных смесей, по возможности надо подобрать такой, который наи- лучшим образом отвечает потребностям данного растения.
Молодые растения выращивают на смеси, концентрация ко- торой уменьшена вдвое и постепенно доводят ее до нор- мального уровня. Один раз в месяц раствор надо менять на
свежий. Для приготовления растворов следует использовать дистиллированную воду, или мягкую дождевую снеговую, родниковую. Если вы хотите замаскировать сосуд, поставь-
те его в декоративную вазу или кашпо.

3. Регулярно, не менее 3-4 раз в сутки нужно «проду- вать» раствор, включая компрессор. Чтобы облегчить эту процедуру, к компрессору можно подсоединить реле време- ни и установить необходимый режим его включения

В дальнейшем развитие водной культуры было направ- лено на создание наиболее благоприятных условий для выращивания растений. В сущности все остальные культу-ры: гравийная, ионито- и аэропоника являются вариантами водной культуры.

Гравийная культура представляет собой модифициро- ванный вариант водной. Она лишена многих недостатков последней и более пригодна для использования любителя- ми-цветоводами. Источник питания, так же как и для водной культуры — питательные смеси. Однако растение выращи- вается на твердом субстрате, поэтому снимается проблема механической неустойчивости.

К субстратам в гравийной культуре предъявляются не- которые требования: они должны быть легкими и механически прочными, не выделять в раствор посторонних ве- ществ, обладать высокой влагоемкостью и воздухопроница- емостью. Хорошо, если их можно использовать несколько раз. В настоящее время в качестве наполнителей для гра-вийной культуры используют искусственные субстраты — вермикулит, керамзит, перлит, гравий, реже крупнозернис-тый песок и даже измельченный поролон.

Органические наполнители применяются реже, т.к. они могут выделять в смесь химические компоненты, к тому же их практически невозможно использовать многократно. Это .древесная кора, опилки, мох и торф.

Наиболее часто используются неорганические наполни- тели: вермикулит, керамзит и перлит.

Вермикулит — материал, образующийся при обработ- ке слюды. Достаточно влагоемкий и воздухопроницаемый, рыхлый, химически инертен, термостоек, не подвержен за-ражению плесневыми грибами.

Керамзит — мелкие, легкие, округлые гранулы — про- дукт обжига глины. Самые мелкие — отличный дренаж.

Перлит — инертный минеральный материал, неболь-шие частички белого цвета, слегка мылкие на ощупь, напо- минают крупнозернистый песок. Однако влагопроницаемость их значительно выше и они содержат в несколько раз боль- ше воздуха.

Совсем недавно в практику начали внедрять совершен- но новый носитель: гидрополимер «эко-почва». Это не-большие белые слегка жирные на ощупь гранулы. Они хи- мически нейтральны, поглощают и удерживают питательные вещества и впитывают объем воды в 300 раз превышаю-щий их собственный. Преимущества этого субстрата состо- ит и в том, что полив можно проводить 1 раз в 3-4 недели. Для приготовления субстрата в 3-х литрах мягкой воды ра- створяют 1/2 колпачка любого комплексного минерального удобрения и добавляют туда же 10 г гранул. Через 4-5 ча-сов сливают излишки воды и субстрат слегка подсушивают в течение 5-10 мин. Для выращивания в данном субстрате наиболее подходят растения с толстыми, прочными корня-ми, которые легко извлекаются из субстрата. При пересад- ке в «эко-почву» корни растений тщательно отмывают от ос- татков прежнего субстрата, поврежденные корни удаляют, на дно горшка помещают субстрат, затем расправленные корни растений, и, осторожно поворачивая горшок, всыпа-ют остальную часть субстрата, так чтобы она равномерно закрыла всю корневую систему. Первые две недели расте- ние прикрывают полиэтиленовым пакетом, проделав в нем небольшое отверстие, которое в течение двух недель по-степенно увеличивают. Признак, по которому определяют не- обходимость полива — кристаллизация «эко-почвы», про- являющаяся в ее незначительном оседании. Чаще всего оно заметно через месяц. Для полива в горшок добавляют воду и оставляют на 4 часа, чтобы гранулы набухли. В качестве удоб- рения в воде растворяют 1/2 колпачка удобрения «Идеал» на 1 л. Увеличить концентрацию кислорода в субстрате можно, аккуратно перемешивая верхний слой гранул палочкой.

При выращивании растений в «эко-почве» могут возник- нуть некоторые проблемы:

Увядание листьев — сверху на растение надевают полиэтиленовый пакет, если через несколько дней листья останутся увядшими, это означает, что повреждены корни; живают растение в субстрат и убирают горшок в более зате- ненное место. Сосуд для гравийной культуры состоит из 2-х частей: внутренняя меньшего диметра, наружная большего. Внут- реннюю емкость заполняют субстратом и в него сажают ра- стение. Во внешней — содержится питательный раствор.

Существуют также контейнеры для гравийной культуры, снабженные специальным указателем уровня питательного раствора. На нем имеются отметки Min, Max и Opt. До макси- мального уровня контейнер наполняют только в жаркие и сухие летние дни. Если уровень раствора снизился до ми- нимума, его доливают примерно до половины оптимального. Для большинства растений это самый подходящий уровень, особенно во влажных и не слишком светлых помещениях.

Иногда в качестве наполнителя в гравийной культуре используют торф или сфагновый мох. Предварительно их насыщают питательным раствором. Затем раскладывают мох на полиэтиленовую ленту, а сверху размещают расте-ние. Затем край ленты снизу подворачивают и вместе с ра-стением аккуратно сворачивают из нее цилиндр. Это очень хороший способ для укоренения и подращивания черенков.

Для небольших растений можно сделать полиэтилено- вые подушечки. Для этого используются плотные неболь-шого размера полиэтиленовые кульки. Их заполняют орга-ническим субстратом (мох, опилки, торф), насыщенным пи- тательной смесью. Открытый край пакета заваривают. Сверху на одной из плоскостей делают крестообразные над- резы, в которые и сажают растения. Такую «подушечку» легко задекорировать, но следует помнить, что полив должен быть очень осторожным, чтобы субстрат не закис. Для этого по-душечку с нижней стороны в нескольких местах прокалыва- ют толстой иглой. Такие подушечки дают прекрасную воз-можность создавать настольные композиции из маломер-ных растений.

Очень интересна еще одна вариация водной культуры — аэропоника. Она достаточно успешно применяется в промыш- ленном цветоводстве и овощеводстве, но ее вполне можно использовать и любителям-цветоводам. Аэропоника в самом простом варианте — это сосуд с наполнителем, соединенный гибким шлангом с емкостью, куда наливается питательный раствор. Периодически емкость с раствором приподнимают, подтапливая сосуд с наполнителем и растением. Когда ее ста- вят на место, излишек раствора стекает.

Правда, для такой установки потребуется довольно мно- го места, да и технически она неудобна. Более сложный ва-риант это емкость с двумя трубками. Одна металлическая с отверстиями предназначена для распыления питательного раствора и расположена ближе ко дну емкости. Вторая, луч- ше из мягкого материала, резины или пластика, нужна для закрепления растения. Емкость сверху закрывают крышкой, с отверстием для растения. Нижняя трубка соединяется с устройством впрыска питательного раствора в емкость. Кор- ни растений постоянно находятся во влажной атмосфере, и питательные вещества поступают к ним в легко усваивае-мой форме.

Чтобы более регулярно опрыскивать корни питатель- ным раствором, можно установить реле времени. В каче- стве питательных растворов используются смеси, создан-ные для водных культур.

И, наконец, самый современный способ — ионитопони ка. Существуют специальные вещества, так называемые ионообменные смолы, которые после насыщения их пита- тельным раствором, постепенно отдают ионы в раствор. Именно такие смолы находятся в питательных батарейках, о которых уже упоминалось ранее. Растения, выращивае- мые на смолах, не нуждаются в дополнительном внесении удобрений в течение 2-3 месяцев. Преимущество этого ме- тода состоит в том, что такой тип питания (обменная ад- сорбция) наиболее типичен для растений в естественных условиях произрастания. Имеющиеся в продаже субстраты ИС-2 и КУАН-2 просты и надежны в обращении, долговечны — «работают» 3-4 года. Лучший результат дает смешива- ние порошкообразных ионообменных смол с равным объемом вермикулита, керамзита, древесных опилок. Несколько лет назад появился и другой тип ионообменных смол: пря-моугольные кусочки различных размеров, внешне напоми- нающие буханку хлеба, а по внутреннему строению — губку. Этот материал называется пенополиуретан. Он прекрасно удерживает растения, корни легко усваивают питательные вещества при поливе. Растения высаживают в надрезы, ко- торые делают на верхней стороне «буханки», затем поме-щают в поддон, куда сливается излишек воды.

Совсем недавно появился новый тип субстрата — крис- таллические полимерные почвы. Они обладают целым ря- дом преимуществ: длительное время сохраняют устойчивую структуру, не темнеют, не ослизняются, в них не развивают-ся гнилостные бактерии, они удерживают не только воду, но и воздух, отличаются экологической безопасностью, просто- той применения. Удобрения постепенно вымываются из кри- сталлов, периодичность полива — 1 раз в 2.5-3 месяца, при этом в засушливый период растения получают достаточное количество воды, а в случае переувлажнения избыток воды поглощается кристаллами, предотвращая загнивание кор- ней. Выпускаются почвы в двух вариантах: Суперпочва и Дизайн-почва.

Любое растение - это настоящий живой организм, и для того, чтобы его развитие шло полноценно, требуются жизненно важные условия: свет, воздух, влага и питание.

Все они равнозначны и недостаток одного пагубно сказывается на общем состоянии. В этой статье мы поговорим о такой важной составляющей в жизни растений, как минеральное питание.

Особенности процесса питания

Являющаяся основным источником энергии, без которой угасают все жизненные процессы, пища необходима каждому организму. Следовательно, питание - не просто важное, а одно из основных условий для качественного роста растения, и они добывают пищу, пуская в ход все надземные части и корневую систему. Посредством корней они извлекают из грунта воду и нужные минеральные соли, пополняющие необходимый запас веществ, осуществляя почвенное или минеральное питание растений.

Существенная роль в этом процессе отведена корневым волоскам, поэтому подобное питание носит еще одно название - корневое. С помощью этих нитевидных волосков растение вытягивает из земли водные растворы самых разных химических элементов.

Работают они по принципу насоса и располагаются на корне в зоне всасывания. Растворы солей, поступающие в ткани волоска, перемещаются в проводящие клетки — трахеиды и сосуды. По ним вещества попадают в проводные далее по стеблям распространяются по всем надземным частям.

Элементы минерального питания растений

Итак, пищей для представителей растительного царства служат вещества, получаемые из почвы. Питание растений минеральное или почвенное - это единство разных процессов: от поглощения и продвижения до усвоения элементов, находящихся в почве в виде минеральных солей.

Исследования золы, оставшейся от растений, показали, как много в ней остается химических элементов и количество их в разных частях и разных представителях флоры не одинаково. Это является свидетельством того, что химические элементы поглощаются и скапливаются в растениях. Подобные опыты привели к следующим выводам: жизненно важными признаны элементы, находящиеся во всех растениях - фосфор, кальций, калий, сера, железо, магний, а также микроэлементы, представленные цинком, медью, бором, марганцем и др.

Несмотря на разное количество этих веществ, имеются они в любом растении, и замена одним элементом другого невозможна ни при каких условиях. Уровень наличия минеральных веществ в почве очень важен, поскольку от этого зависит урожайность сельскохозяйственных культур и декоративность цветущих. В разных почвах различна и степень насыщенности почвы нужными веществами. К примеру, в умеренных широтах России отмечается существенная нехватка азота и фосфора, иногда калия, поэтому обязательным является внесение удобрений - азотных и калийно-фосфорных. Каждому элементу отведена своя роль в жизни растительного организма.

Правильное питание растений (минеральное) стимулирует качественное развитие, которое осуществляется лишь тогда, когда все необходимые вещества в нужном количестве имеются в почве. Если наблюдается нехватка или излишек некоторых из них, растения реагируют изменением окраски листвы. Поэтому одним из важных условий агротехники сельскохозяйственных культур являются разработанные нормы внесения подкормок и удобрений. Отметим, что многие растения лучше недокормить, чем перекормить. Например, для всех ягодных садовых культур и их дикорастущих форм губителен именно избыток питания. Узнаем, как разные вещества взаимодействуют с и на что каждое из них влияет.

Азот

Один из самых необходимых для роста растения элементов - азот. Он присутствует в составе белков и аминокислот. Дефицит азота проявляется в изменении окраски листьев: на первых порах лист мельчает и краснеет. Существенная нехватка вызывает нездоровый желто-зеленый цвет или бронзово-красный налет. Первыми поражаются более старые листья снизу на побегах, затем по всему стеблю. При продолжающемся дефиците прекращается рост ветвей и завязывание плодов.

Излишнее соединениями ведет к повышенному содержанию азота в почве. При этом наблюдают бурный рост побегов и интенсивное наращивание зеленой массы, что не дает возможности растению заложить цветковые почки. В результате продуктивность растения заметно снижается. Вот почему так важно сбалансированное минеральное почвенное питание растений.

Фосфор

Не менее важен в растительной жизнедеятельности и этот элемент. Он является составляющей частью нуклеиновых кислот, соединение которых с белками образуют нуклеопротеиды, входящие в состав ядра клетки. Фосфор концентрируется в тканях растений, их цветках и семенах. Во многом способность деревьев противостоять природным катаклизмам зависит от наличия фосфора. Он отвечает за морозоустойчивость и комфортное проведение зимовки. Дефицит элемента проявляется в замедлении деления клеток, прекращении роста растения и развития корневой системы, листва приобретает лилово-красный оттенок. Усугубление ситуации грозит растению гибелью.

Калий

В минеральные вещества для питания растений входит калий. Он необходим в наибольших количествах, поскольку стимулирует процесс всасывания, биосинтеза и транспортировки жизненно важных элементов во все части растения.

Нормальное обеспечение калием повышает сопротивляемость растительного организма, стимулирует защитные механизмы, засухо- и холодоустойчивость. Цветение и плодообразование с достаточным обеспечением калием более эффективно: цветы и плоды значительно крупнее и ярче окрашены.

При нехватке элемента рост существенно замедляется, а сильный дефицит приводит к истончению и ломкости стеблей, изменению окраски листьев на лилово-бронзовую. Затем листья сохнут и разрушаются.

Кальций

Нормальное почвенное питание растений (минеральное) невозможно без кальция, который присутствует практически во всех клетках растительного организма, стабилизируя их функциональность. Особенно значим этот элемент для качественного роста и работы корневой системы. Недостаток кальция сопровождается задержкой роста корней и неэффективным формированием корневой системы. Проявляется недостаток кальция в покраснении кромки верхних листьев на молодых побегах. Усиливающийся дефицит добавит пурпурной окраски на всей площади листа. Если кальций так и не поступит в растение, то листья у побегов текущего года засыхают вместе с верхушками.

Магний

Процесс минерального питания растений при нормальном развитии невозможен без магния. Входя в состав хлорофилла, он является обязательным элементом процесса фотосинтеза.

Активизируя ферменты, принимающие участие в обмене веществ, магний стимулирует закладку ростовых почек, прорастание семян и другую репродуктивную деятельность.

Признаки нехватки магния - появление красноватого оттенка в основании листьев, распространяющегося вдоль центрального проводника и занимающего до двух третей листовой пластины. Сильный дефицит магния приводит к омертвению листа, снижению продуктивности растения и его декоративности.

Железо

Отвечающий за нормальное дыхание растений, этот элемент незаменим в окислительно-восстановительных процессах, поскольку именно он является акцептором молекул кислорода и синтезирует вещества-предшественники хлорофилла. При дефиците железа растение поражает светлеют и истончаются, приобретая желтовато-зеленую, а затем ярко-желтую окраску с темными ржавыми пятнами. Нарушение дыхание провоцирует замедление роста растений, значительное снижение урожайности.

Марганец

Ничуть не преувеличивая значения необходимых микроэлементов, вспомним о том, как реагируют на них растения и почва. Минеральное питание растений дополняется марганцем, обязательным для продуктивного течения процессов фотосинтеза, а также синтеза белков и др. Нехватка марганца проявляется в слабой молодой поросли, а сильный дефицит делает ее нежизнеспособной - листья на стеблях желтеют, верхушки побегов засыхают.

Цинк

Этот микроэлемент - активный участник в процессе образования ауксина и катализатор роста растения. Являясь обязательным компонентом хлоропластов, цинк присутствует при фотохимическом расщеплении воды.

Он необходим при оплодотворении и развитии яйцеклетки. Дефицит цинка становится заметным в конце и во время отдыха - листья приобретают лимонный оттенок.

Медь

Питание растений минеральное или корневое будет неполным без этого микроэлемента. Входящая в состав целого ряда ферментов, медь активизирует такие важные процессы, как дыхание растения, белковый и углеводный обмены. Производные меди - обязательные компоненты фотосинтеза. Недостаток этого элемента проявляется засыханием верхушечных побегов.

Бор

Стимулирующий синтез аминокислот, углеводов и белков, бор присутствует во многих ферментах, регулирующих обмен. Признаком острой нехватки бора является появление пестрых пятен на молодых стеблях и проявляющийся синеватый оттенок листьев у основания побегов. Дальнейший дефицит элемента приводит к разрушению листвы и гибели молодой поросли. Цветение получается слабое и непродуктивное - плоды не завязываются.

Мы перечислили основные химические элементы, необходимые для нормального развития, качественного цветения и плодоношения. Все они, правильно сбалансированные, составляют качественное минеральное питание растений. И значение воды также переоценить сложно, ведь все вещества из почвы поступают в растворенном виде.

Нужды растительного организма не ограничиваются водой, светом и углекислым газом. Кроме этого, для жизни растению абсолютно необходимы минеральные вещества, растворенные в воде. Без них растение не может расти, функционировать и плодоносить. К химическим элементам, наиболее необходимым для растений, относятся: N, P, Mg, Cl, Ca, S. Натрий входит в состав аминокислот; фосфор – в состав нуклеиновых кислот; магний – в состав хлорофилла; хлор, кальций, сера и многие другие элементы необходимы для поддержания жизнедеятельности не только растительных, но и любых других клеток. Растения получают микроэлементы из грунтового раствора. Особую потребность растительный организм испытывает в нитратах и фосфоре, поэтому недостаток этих элементов больше всего обозначается на росте и развитии растения. В разных частях земного шара почва имеет разный химический состав. Если почва, на которой выращиваются культурные растения, не содержит достаточного количества минералов, вегетативная масса растений и урожайность сильно снижаются. Тогда для восстановления урожайности в почву необходимо внести удобрения – вещества, содержащие минералы. Если количество удобрений чрезмерно, оно не используется растениями или накапливается в их тканях. Использование таких растений в пищу может привести к отравлению.

Воздушное питание растений осуществляется с помощью фотосинтеза.

Фотосинтез – это процесс преобразования энергии солнечного света в энергию химических связей и синтеза органических соединений (углеводов) из неорганических (воды и углекислого газа).

Основным фотосинтетическим пигментом высших растений является хлорофилл. По химической структуре различают несколько видов хлорофилла – a (содержится в хлоропластах всех зеленых растений и цианобактерий), b , c и d (присутствуют вместе с хлорофиллом a в клетках водорослей).

Процесс фотосинтеза состоит из двух взаимосвязанных этапов световой и темновой фаз. Световая фаза происходит лишь при наличии света, с помощью фотосинтетических пигментов в тилакоидах хлоропластов. Реакции темновой фазы не требуют для своего осуществления света и происходят в строме хлоропластов.

В световой фазе фотосинтеза происходит поглощение света молекулами хлорофилла и трансформация энергии света в химическую энергию АТФ и восстановленного НАНДФН (никотинамидадениндинуклеотидфосфат восстановленный). Эти процессы осуществляются белковыми комплексами, которые входят в состав тилакоидов хлоропластов.

Одними из таких комплексов являются фотосистема 1 (ФС1) и фотосистема 2 (ФС2). В каждой фотосистеме выделяют три зоны: антенный комплекс, реакционный центр, первичные акцепторы электронов. Антенный комплекс состоит из хлорофилла b и вспомогательных пигментов. Он предназначен для улавливания энергии света и передачи ее на реакционный центр. К реакционному центру ФС1 и ФС2 относятся молекулы хлорофилла a .

Процессы в световой фазе осуществляются по так называемой Z-схеме. Кванты света, попадая на ФС2 и передавая ей всю свою энергию, возбуждают электроны реакционного центра, которые передаются через цепь белковых переносчиков и теряют при этом энергию. Образованное вследствие выхода электронов вакантное место в ФС2 пополняется электронами, полученными во время фотолиза воды – реакции расщепления молекулы воды под действием кванта света с выделением протонов, электронов и кислорода.

Вместе с тем в случае возбуждения реакционного центра ФС1 электрон передается через железосодержащие белки, также теряя при этом энергию. Часть энергии, которая выделилась, идет на ферментативное восстановление НАДФ+ к НАДФН. Вакантное место, которое образовалось в ФС1, занимается электронами, которые поступили с ФС2. Энергия, которая высвободилась во время прохождения электронов с ФС2 в ФС2, используется для синтеза АТФ с АДФ и неорганического фосфата.

Образованные в результате фотохимических реакций АТФ и НАДФН используются для осуществления реакций темновой фазы, в которой происходит восстановление молекул СО 2 к молекулам углеводов (глюкозы). Существуют разные способы восстановления СО 2 , наиболее распространенный из них – цикл Кальвина , присущий всем растениям.

В процессе цикла Кальвина происходит фиксация атома Карбона СО 2 для построения глюкозы (С 6 Н 12 О 6) с рибулезо1,5 дифосфата (С 5 Н 8 О 5 Р 2).

Для синтеза 1 молекулы глюкозы в цикле Кальвина необходимо 12 молекул НАДФН и 18молекул АТФ, которые образовываются в результате фотохимических реакций фотосинтеза. Энергия для синтеза углеводов образовывается вследствие расщепления молекул АТФ, синтезированных во время прохождения электронов по компонентам ФС1 и ФС2.

Образования в процессе цикла Кальвина глюкоза может потом расщепляться до пирувата и поступать в цикл Кребса.