Взаимодействие галогенов с оксидами. Строение и химические свойства галогенов и их соединений

Фтор может быть только окислителем, что легко объяснить его положением в периодической системе химических элементов Д. И. Менделеева. Это сильнейший окислитель, окисляющий даже некоторые благородные газы:

2F 2 +Хе=XeF 4

Высокую химическую активность фтора следует объяснить

о на разрушение молекулы фтора требуется намного меньше энергии, чем ее выделяется при образовании новых связей.

Так, вследствие малого радиуса атома фтора неподеленные электронные пары в молекуле фтора взаимно сталкиваются и ослабевает

Галогены взаимодействуют почти со всеми простыми веществами.

1. Наиболее энергично протекает реакция с металлами. При нагревании фтор взаимодействует со всеми металлами (в том числе с золотом и платиной); на холоду реагирует с щелочными металлами, свинцом, железом. С медью, никелем реакция на холоду не протекает, поскольку на поверхности металла образуется защитный слой фторида, предохраняющий металл от дальнейшего окисления.

Хлор энергично реагирует с щелочными металлами, а с медью, железом и оловом реакция протекает при нагревании. Аналогично ведут себя бром и иод.

Взаимодействие галогенов с металлами является экзотерми­ческим процессом и может быть выражена уравнением:

2М+nHaI 2 =2МНаI DH<0

Галогениды металлов являются типичными солями.

Галогены в этой реакции проявляют сильные окислительные свойства. При этом атомы металла отдают электроны, а атомы галогена принимают, например:

2. При обычных условиях фтор реагирует с водородом в тем­ноте со взрывом. Взаимодействие хлора с водородом протекает на ярком солнечном свету.

Бром и водород взаимодействуют только при нагревании, а иод с водородом реагирует при сильном нагревании (до 350°С), но этот процесс обратимый.

Н 2 +Сl 2 =2НСl Н 2 +Br 2 =2НBr

Н 2 +I 2 « 350° 2HI

Галоген в данной реакции является окислителем.

Как показали исследования, реакция взаимодействия водо­рода с хлором на свету имеет следующий механизм.

Молекула Сl 2 поглощает квант света hv и распадается на неор­ганические радикалы Сl . . Это служит началом реакции (первона­чальное возбуждение реакции). Затем она продолжается сама со­бой. Радикал хлора Сl . реагирует с молекулой водорода. При этом образуется радикал водорода Н. и НСl. В свою очередь радикал водорода Н. реагирует с молекулой Сl 2 , образуя НСl и Сl . и т.д.

Сl 2 +hv=Сl . +Сl .

Сl . +Н 2 =НСl+Н.

Н. +Сl 2 =НСl+С1 .

Первоначальное возбуждение вызвало цепь последователь­ных реакций. Такие реакции называются цепными. В итоге полу­чается хлороводород.

3. Галогены с кислородом и азотом непосредственно не взаи­модействуют.

4. Хорошо реагируют галогены с другими неметаллами, на­пример:

2Р+3Сl 2 =2РСl 3 2Р+5Сl 2 =2РСl 5 Si+2F 2 =SiF 4

Галогены (кроме фтора) не реагируют с инертными газами. Химическая активность брома и иода по отношению к неме­таллам выражена слабее, чем у фтора и хлора.

Во всех приведенных реакциях галогены проявляют окисли­тельные свойства.

Взаимодействие галогенов со сложными веществами. 5. С водой.

Фтор реагирует с водой со взрывом с образованием атомарного кислорода:

H 2 O+F 2 =2HF+O

Остальные галогены реагируют с водой по следующей схеме:

Гал 0 2 +Н 2 О«НГал -1 +НГал +1 О

Эта реакция является реакцией диспропорционирования, когда галоген является одновременно и восстановителем, и окис­лителем, например:

Сl 2 +Н 2 O«НСl+НСlO

Cl 2 +H 2 O«H + +Cl - +HClO

Сl°+1e - ®Сl - Cl°-1e - ®Сl +

где НСl - сильная соляная кислоты; НСlO - слабая хлорноватис­тая кислота

6. Галогены способны отнимать водород от других веществ, скипидар+С1 2 = НС1+углерод

Хлор замещает водород в предельных углеводородах: СН 4 +Сl 2 =СН 3 Сl+НСl

и присоединяется к непредельным соединениям:

С 2 Н 4 +Сl 2 =С 2 Н 4 Сl 2

7. Реакционная способность галогенов снижается в ряду F-Сl - Br - I. Поэтому предыдущий элемент вытесняет последую­щий из кислот типа НГ (Г - галоген) и их солей. В этом случае активность убывает: F 2 >Сl 2 >Br 2 >I 2

Применение

Хлор применяют для обеззараживания питьевой воды, отбел­ки тканей и бумажной массы. Большие количества его расходу­ются для получения соляной кислоты, хлорной извести и др. Фтор нашел широкое применение в синтезе полимерных материалов - фторопластов, обладающих высокой химической стойкостью, а также в качестве окислителя ракетного топлива. Некоторые со­единения фтора используют в медицине. Бром и иод - сильные окислители, используются при различных синтезах и анализах веществ.

Большие количества брома и иода расходуются на изготовле­ние лекарств.

Галогеноводороды

Соединения галогенов с водородом НХ, где X - любой га­логен, называются галогеноводородами. Вследствие высокой электроотрицательности галогенов связующая электронная пара смещена в их сторону, поэтому молекулы этих соединений полярны.

Галогеноводороды - бесцветные газы, с резким запахом, легко растворимы в воде. При 0°С в 1 объеме воды растворяете 500 объемов НС1, 600 объемов HBr и 450 объемов HI. Фтороводород смешивается с водой в любых соотношениях. Высокая раство­римость этих соединений в воде позволяет получать концентриро-

Таблица 16. Степени диссоциации галогеноводородных кислот

ванные растворы. При растворении в воде галогеноводороды диссоциируют по типу кислот. HF относится к слабо диссоциированным соединениям, что объясняется особой прочностью связи в куле. Остальные же растворы галогеноводородов относятся к числу сильных кислот.

HF - фтороводородная (плавиковая) кислота НС1 - хлороводородная (соляная) кислота HBr - бромоводородная кислота HI - иодоводородная кислота

Сила кислот в ряду HF - НСl - HBr - HI возрастает, что объясняется уменьшением в том же направлении энергии связи и увеличением межъядерного расстояния. HI - самая сильная кислота из ряда галогеноводородных кислот (см. табл. 16).

Поляризуемость растет вследствие того, что вода поляризует

больше ту связь, чья длина больше. I Соли галогеноводородных кислот носят соответственно следующие названия: фториды, хлориды, бромиды, иодиды.

Химические свойства галогеноводородных кислот

В сухом виде галогеноводороды не действуют на большинство металлов.

1. Водные растворы галогеноводородов обладают свойствами бескислородных кислот. Энергично взаимодействуют со многими металлами, их оксидами и гидроксидами; на металлы, стоящие в электрохимическом ряду напряжений металлов после водорода, не действуют. Взаимодействуют с некоторыми солями и газами.

Фтороводородная кислота разрушает стекло и силикаты:

SiO 2 +4HF=SiF 4 +2Н 2 O

Поэтому она не может храниться в стеклянной посуде.

2. В окислительно-восстановительных реакциях галогеноводородные кислоты ведут себя как восстановители, причем восста­новительная активность в ряду Сl - , Br - , I - повышается.

Получение

Фтороводород получают действием концентрированной серной кислоты на плавиковый шпат:

CaF 2 +H 2 SO 4 =CaSO 4 +2HF­

Хлороводород получают непосредственным взаимодействием водорода с хлором:

Н 2 +Сl 2 =2НСl

Это синтетический способ получения.

Сульфатный способ основан на реакции концентрированной

серной кислоты с NaCl.

При небольшом нагревании реакция протекает с образовани­ем НСl и NaHSO 4 .

NaCl+H 2 SO 4 =NaHSO 4 +HCl­

При более высокой температуре протекает вторая стадия ре­акции:

NaCl+NaHSO 4 =Na 2 SO 4 +HCl­

Но аналогичным способом нельзя получить HBr и HI, т.к. их соединения с металлами при взаимодействии с концентрировав-

ной серной кислотой окисляются, т.к. I - и Br - являются сильны­ми восстановителями.

2NaBr -1 +2H 2 S +6 O 4(к) =Br 0 2 +S +4 O 2 ­+Na 2 SO 4 +2Н 2 O

Бромоводород и иодоводород получают гидролизом PBr 3 и PI 3: PBr 3 +3Н 2 O=3HBr+Н 3 PO 3 PI 3 +3Н 2 О=3HI+Н 3 РO 3

Галогениды

Галогениды металлов являются типичными солями. Харак­теризуются ионным типом связи, где ионы металла имеют поло­жительный заряд, а ионы галогена отрицательный. Имеют крис­таллическую решетку.

Восстановительная способность галогенидов повышается в ряду Сl - , Br - , I - (см. §2.2).

Растворимость малорастворимых солей уменьшается в ряду AgCl - AgBr - AgI; в отличие от них, соль AgF хорошо раство­рима в воде. Большинство же солей галогеноводородных кислот хорошо растворимы в воде.

Галогены – так обозначаются элементы химической таблицы Менделеева, расположенные в семнадцатой группе. Особенность в том, что они вступают в реакцию почти что со всеми веществами простого типа, исключая лишь определенные неметаллы. Так как они выступают в роли энергетических окислителей, в природе они смешиваются с другими веществами. Химическая активность галогенов напрямую зависит от порядкового номера.

Общие сведения о галогенах

Галогенами называют данные элементы: фтор, хлор, бром, йод и астат. Все они относятся к ярко выраженным неметаллам. Только лишь в йоде можно при определенных обстоятельствах обнаружить свойства, приписываемые металлам.

Изначально был использован термин «галоген» в 1811 году немецким ученым И. Швейггером, который дословно с греческого переводится как «солерод».

Будучи в основном состоянии электронная конфигурация атомов галогенов следующая – ns 2 np 5, где буквой n отмечается главное квантовое число или период. Если сравнить атом хлора с остальными галогенами, будет заметно, что его электроны слабо экранированы от ядра, из-за чего тот характеризуется высокой удельной электронной плотностью и меньшим радиусом, а также имеет большие значения энергии ионизации и электроотрицательности.

Фтор (F) – элемент, доступный в виде солей, которые рассеяны по разным горным породам. Наиболее важное соединение – минерал флюорит и плавиковый шпат. Также небезызвестен минерал криолит.

Хлор (Cl) – является наиболее распространенным галогеном. Его важнейшим природным соединением считается хлорид натрия, который применяется в качестве основного сырья, если нужно получить другие хлористые соединения. Хлорид натрия в большей массе распространен в водах морей и океанов, но встретить его можно и в некоторых озерах. Отыскать данный галоген можно и в твердом виде, так называемой каменной соли.

Бром (Br) – в условиях природы имеет вид солей натрия и калия в паре с хлористыми солями. Как правило, встречается в соленых озерах и морях.

Йод (J) – химический элемент, который также нередко встречается в морской воде, но в очень малых количествах, поэтому выделение его из влаги – процедура достаточно затруднительная. Заметим, что существует определенный вид морских водорослей – ламинарии, в их тканях происходит накопление йода. Из золы этих водорослей и добывается йод. Встретить йод можно и в буровых водах, пролегающих под землей.

Астат (At) – практически не встречаемый в условиях природы химический элемент. Чтобы его добыть, искусственно осуществляются ядерные реакции. У астата имеется самый долгоживущий изотоп, период полураспада которого составляет 8.3 часа.

Химические особенности галогенов

Задавая вопрос, галогены – что это такое, следует ответить, что это все элементы Менделеевской таблицы, где у каждого есть свой собственный показатель химической активности. При рассмотрении последней у фтора следует отметить, что она максимально высокая. Академик А.Е. Ферсман называет фтор всесъедающим. Так, если взять комнатную температуру, то в атмосфере фтора будут сгорать железо, свинец и щелочные металлы.

Важно! Фтор не оказывает никакого воздействия на определенные металлы (медь, никель), на поверхности которых образуется защитный слой в виде фторида. Но если нагреть фтор, реакция начнет появляться.

Отметим реакцию фтора на многие неметаллы, среди которых водород, йод, углерод, бор и другие. В условиях холода образуются соответствующие соединения, которые способны привести к взрыву или образованию пламени. Фтор не способен реагировать лишь на кислород, азот и углерод (последний должен быть в виде алмаза).

Очень энергичная реакция замечена на сложные вещества. В атмосфере фтора сгорают даже довольно стойкие вещества в виде стекла (вата) и водяного пара. Следует заметить, что фтор нельзя растворить в воде, так как он способен ее энергично растворять.

Обратите внимание! Фтор является самым сильным окислителем.

Каждые галогенные соединения имеют свои особенности, так, у хлора также заметна высокая химическая активность, хоть и уступающая фтору. Данный элемент способен оказывать действие на все простые вещества, исключая лишь кислород, азот и благородные газы. В условиях высокой температуры следующие неметаллы: фосфор, мышьяк, кремний и сурьма, вступая в реакцию с хлором, выделяют большое количество тепла. В условиях комнатной температуры и без света хлор почти что не оказывает воздействия на водород, но если его нагреть или добавить яркий солнечный свет, реакция способна привести к взрыву.

Реакция хлора на воду следующая: образуется соляная и хлорноватистая кислота. Если в хлор внести фосфор, то последний загорится, в результате чего образуется трех,- и пятихлористый фосфор.

Чтобы получить хлор, необходимо осуществить электролиз концентрированных водных растворов NaCl. Со стороны угольного анода начнет выделяться хлор, а на катоде – водород. Используя хлор, получают хлористый водород и соляную кислоту, которая применяется с целью отбеливания бумаги и тканей и, если требуется обеззаразить питьевую воду.

Галогенные соединения с бромом имеют более низкую химическую активность, нежели с хлором. Бром с водородом соединяются лишь в условиях нагревания. Для получения брома необходимо окислить HBr. В промышленных условиях используются бромиды и хлористый раствор. На территории России основной источник брома – подземные буровые воды и насыщенные растворы определенных соляных озер.

У йода еще меньший показатель химической активности, которую имеют другие галогенные соединения. Несмотря на меньшую активность, данный элемент также способен вступать в реакцию со многими неметаллами в обычных условиях, в результате чего образуются соли (если обратить внимание, то слово «галоген» исходит от слов «рождение соли»).

Для реакции йода с водородом требуется довольно сильное нагревание. Сама реакция неполная, так как жидкий водород начинает разлагаться.

Сравнивая галогенные соединения, отмечается, что их активность становится меньше от фтора к астату. Особенность галогенов в том, что они вступают в реакцию со многими простыми веществами. В случае с металлами наблюдается быстрая реакция, при которой выделяется большое количество тепла.

Особенности добычи и использования галогенов

В естественных условиях галогены – анионы, поэтому для получения свободных галогенов применяется метод окисления электролизом или с использованием окислителей. К примеру, чтобы получить хлор, необходимо сделать гидролиз раствора поваренной соли. Галогенные соединения используются во многих отраслях:

  • Фтор. Несмотря на большую реактивность, данный химический элемент находит частое применение в промышленности. К примеру, фтор – ключевой элемент тефлона и прочих фторполимеров. Также в виде органических химических веществ представим хлорфторуглероды, ранее используемые как хладагенты и пропелленты в аэрозолях. Впоследствии их прекратили применять, так как была вероятность, что они воздействуют на окружающую среду. Фтор часто встречается в составе зубной пасты, направленный на сохранение целостности зубов. Также данный галоген можно застать в глине, где он актуален для производства керамики;
  • Хлор. Наиболее частое использование хлора – дезинфекция питьевой воды и бассейнов. А такое соединение, как гипохлорит натрия, – основной компонент отбеливателя. Промышленные структуры и лаборатории не обходятся без применения соляной кислоты. В состав поливинилхлорида также входит фтор, как и в другие полимеры, при помощи которых осуществляется изоляция труб, проводки и прочих коммуникаций. Нашлось хлору применение и в фармацевтике, где на его основе производятся лекарства, при помощи которых лечатся инфекции, аллергии и диабет. Как было отмечено выше, хлор хорошо дезинфицирует, поэтому с его помощью стерилизуется больничное оборудование;
  • Бром. Главная особенность данного химического элемента в том, что он негорюч. По этой причине он успешно используется для подавления горения. Бром в составе с другими элементами в одно время шел для производства специальных средств для огорода, благодаря которым гибли все бактерии. Но со временем средство запретили с предлогом, что последнее оказывает негативное воздействие на озоновый слой планеты. Также бром актуален в таких сферах: производство бензина, изготовление фотопленки, огнетушителей и некоторых лекарств;
  • Йод. Важный химический элемент, от которого зависит правильное функционирование щитовидной железы. Из-за нехватки йода в организме последняя может даже начать увеличиваться в размерах. Йод себя отлично зарекомендовал как антисептическое средство. Йод встречается в растворах, при помощи которых очищают раны;
  • Астат. Данный галоген является не только редкоземельным, но и радиоактивным, по этой причине не находит особенного применения.

Галогены и их физические свойства

Наличие тех или иных химических и физических свойств напрямую зависит от строения атома элемента. По большей части, у всех галогенов схожие свойства, но все же имеются определенные особенности:

  • Фтор. Элемент в виде светло-зеленого газа с ядовитыми свойствами;
  • Хлор. Желто-зеленый газ, также ядовитый, с резким, удушливым и неприятным запахом. Элемент способен легко растворяться в воде, из-за чего образуется хлорная вода;
  • Бром. Выступает в качестве единственного жидкого неметалла. Это тяжелый элемент, выполненный в красно-буром цвете. Если поместить бром в какой-либо сосуд, стенки последнего окрасятся в красно-бурый цвет, выделяемый с парами галогена. Запах брома тяжелый и неприятный. Для хранения брома используются специальные склянки, имеющие притертые пробки и колпаки. Важно заметить, что последние не должны быть сделаны из резины, так как элемент способен легко разъесть этот материал;
  • Йод. Темно-серое кристаллическое вещество, в парах имеющее фиолетовый цвет. Обычные условия не дают возможность привести йод в состояние плавления, а тем более кипения, так как даже слабое нагревание элемента приводит к его возгонке: когда он из твердого переходит в газообразное состояние. Этим свойством обладает не только йод, но и некоторые другие вещества. Это свойство пригодилось при очистке веществ от примесей. Йод – один из тех элементов, которые плохо растворяются в воде. Последняя получает светло-желтый цвет. Особенно хорошо йод способен растворяться в спирте, в результате чего начали делать 5-10% йодный раствор, называемый йодной настойкой.

Галогенные соединения и их роль в организме человека

При выборе зубной пасты многие обращают внимание на состав: есть ли в нем фтор. Данный компонент добавляется не просто так, ведь именно он способствует построению зубной эмали и костей, а также способен сделать зубы более стойкими к кариесу. Процессы обмена веществ также не обходятся без помощи фтора.

В организме человека немаловажное значение играет также хлор, активно участвующий в сохранении водно-солевого баланса, а также поддерживающий осмотическое давление. Благодаря хлору, эффективнее функционирует обмен веществ, построение тканей. Лучшему пищеварению способствует именно соляная кислота, без которой невозможно было бы переваривать пищу.

Хлор обязателен для человеческого организма и должен поступать в него в определенных количествах. Если пренебрегать нормой поступления элемента в организм, можно столкнуться с отеками, головными болями и прочими неприятными ощущениями.

Бром в небольших количествах находится в мозге, почках, крови и печени. В медицине бром – отличное средство успокоительного типа. Однако его необходимо давать в строгих пропорциях, так как последствия у передозировки не лучшие: угнетенное состояние нервной системы.

Йод строго необходим щитовидной железе, помогая последней активно бороться с поступающими в организм бактериями. Если в организме человека недостаточно йода, может начаться заболевание щитовидной железы.

В качестве вывода отметим, что галогены необходимы не только для реализации многих повседневных вещей, но и для эффективного функционирования нашего организма. Данные химические элементы имеют определенные особенности, которые находят свое применение в различных отраслях человеческой жизнедеятельности.

Видео

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H 2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Взаимодействие водорода с простыми веществами

с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н 2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:

Взаимодействие водорода со сложными веществами

с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H 2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal 2 .

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке . Возгонкой , называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

F 2 > Cl 2 > Br 2 > I 2

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами

водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Остальные галогены реагируют со всеми металлами кроме платины и золота:

Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Аналогичным образом, бром и йод вытесняют серу из растворов сульфидов и или сероводорода:

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:

а при нагревании:

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду.

Из учебника химии многие знают, что к галогенам относятся химические элементы периодической системы Менделеева из 17 группы в таблице.

С греческого переводится как рождение, происхождение. Практически все они высокоактивны, благодаря чему бурно реагируют с простыми веществами за исключением нескольких неметаллов. Что же такое галогены и каковы их свойства?

Вконтакте

Перечень галогенов

Галогены являются хорошими окислителями, по этой причине в природе их можно встретить только в каких-либо соединениях. Чем выше порядковый номер, тем химическая активность элементов этой группы меньше. К группе галогенов относятся нижеперечисленные элементы:

  • хлор (Cl);
  • фтор (F);
  • иод (I);
  • бром (Br);
  • астат (At).

Последний разработан в институте ядерных исследований, который расположен в городе Дубна. Фтор относится к ядовитым газам бледно-жёлтого цвета. Хлор также ядовит. Это газ, имеющий довольно резкий и неприятный запах светло-зелёного цвета. Бром имеет красно-бурый окрас, это ядовитая жидкость, которая может даже поражать обоняние. Он очень летуч, поэтому его хранят в ампулах. Йод — кристаллическое легко возгоняющееся вещество тёмно-фиолетового цвета. Астат радиоактивен, цвет кристаллов: чёрный с синевой, период полураспада составляет 8,1 часа.

Высокая активность окисления галогенов падает от фтора к иоду. Самым активным из собратьев является фтор, который имеет свойство вступать в реакцию с любыми металлами, образуя соли , некоторые из них при этом самовоспламеняются, при этом выделяется огромное количество тепла. Без нагрева этот элемент реагирует почти со всеми неметаллами , реакции сопровождаются выделением некоторого количества теплоты (экзотермические).

С инертными газами фтор вступает во взаимодействие, при этом облучаясь (Хе + F 2 = XeF 2 + 152 кДж). Нагреваясь, фтор влияет на другие галогены, окисляя их. Имеет место формула: Hal 2 + F 2 = 2НalF, где Hal = Cl, Br, I, At, в случае, когда HalF степени окисления хлора, брома, иода и астата равны + 1.

Со сложными веществами фтор также взаимодействует довольно энергично. Следствием является окисление воды. При этом происходит взрывная реакция, которая коротко записывается формулой: 3F 2 + ЗН 2 О = OF 2 + 4HF + Н 2 О 2.

Хлор

Активность свободного хлора несколько меньше, в сравнении со фтором, но он также имеет хорошую способность вступать в реакцию. Это может происходить при взаимодействии со многими простыми веществами, за редким исключением в виде кислорода, азота, инертных газов. Он может бурно реагировать со сложными веществами , создавая реакции замещения, свойство присоединения углеводородов — это тоже присуще хлору. При нагреве происходит вытеснение брома или йода из соединений с водородом или металлами.

Своеобразные отношения у этого элемента с водородом. При комнатной температуре и без попадания света, хлор никак не реагирует на этот газ, но стоит его лишь нагреть или направить свет, произойдёт взрывная цепная реакция. Формула приведена ниже:

Cl 2 + h ν → 2Cl , Cl + Н 2 → HCl + Н, Н + Cl 2 → HCl + Cl , Cl + Н 2 → HCl + Н и т. д.

Фотоны, возбуждаясь, вызывают разложение на атомы молекул Cl 2, при этом возникает цепная реакция, вызывая появление новых частиц, которые инициируют начало следующей стадии. В истории химии это явление было исследовано. Русский химик и лауреат Нобелевской премии Семёнов Н.Н. в 1956 году занимался изучением цепной фотохимической реакции и внёс тем самым большой вклад в науку.

Хлор реагирует со многими сложными веществами, это реакции замещения и присоединения. Он хорошо растворяется в воде.

Cl 2 + Н 2 О = HCl + HClO - 25 кДж.

Со щелочами при нагреве хлор может диспропорционировать .

Бром, йод и астат

Химическая активность брома чуть меньше, чем у вышеназванных фтора или хлора, однако она тоже довольно велика. Бром часто применяют в жидком виде. Он, как и хлор, очень хорошо растворяется в воде. Происходит частичная реакция с ней, позволяющая получать «бромную воду».

Химическая активность йода заметно отличается от остальных представителей этого ряда. Он почти не взаимодействует с неметаллами, а с металлами реакция идёт очень медленно и только при нагреве . При этом происходит большое поглощение тепла (эндотермическая реакция), которая сильно обратима. К тому же йод нельзя никаким образом растворить в воде , этого не достичь даже при нагреве, поэтому в природе не бывает «йодной воды». Йод можно растворить только в растворе йодида. При этом образуются комплексные анионы . В медицине такое соединение называется раствором Люголя.

Астат реагирует с металлами и водородом. В ряду галогенов химическая активность уменьшается по направлению от фтора к астату. Каждый галоген в ряду F - At способен вытеснять после­дующие элементы из соединений с металлами или водородом. Астат — самый пассивный среди этих элементов. Но ему присуще взаимодействие с металлами.

Применение

Химия прочно входит в нашу жизнь, внедряясь во все сферы. Человек научился применять галогены, а также его соединения на своё благо. Биологическое значение галогенов неоспоримо. Области применения их различны:

  • медицина;
  • фармакология;
  • производство различных пластмасс, красителей и т. д.;
  • сельское хозяйство.

Из природного соединение криолита, химическая формула которого выглядит следующим образом: Na3AlF6, получают алюминий . Соединения фтора нашли широкое распространение при производстве зубных паст . Фтор, как известно, служит для профилактики кариеса. Спиртовую настойку йода применяют для дезинфекции и обеззараживания ран .

Наиболее широкое применение в нашей жизни нашёл хлор. Область его применения довольно многообразна. Примеры использования:

  1. Производство пластмасс.
  2. Получение соляной кислоты.
  3. Производство синтетического волокна, растворителей, каучуков и др.
  4. Отбеливание тканей (льняных и хлопчатобумажных), бумаги.
  5. Обеззараживание питьевой воды. Но всё чаще для этой цели используется озон, так как применение хлора вредно для организма человека.
  6. Дезинфекция помещений

Нужно помнить, что галогены — очень токсичные вещества. Особенно ярко это свойство выражено у фтора. Галогены могут оказывать удушающее и воздействие на органы дыхания и поражать биологические ткани.

Огромную опасность могут иметь пары хлора, а также аэрозоль фтора, имеющий слабый запах, он может ощутиться при большой концентрации. Человек может получить эффект удушья. При работе с такими соединениями нужно соблюдать меры предосторожности.

Методы производства галогенов сложные и многообразные. В промышленности к этому подходят с определёнными требованиями, соблюдение которых неукоснительно соблюдаются.

На валентных орбиталях - 7 электронов ns2np5. Являются сильными окислителями, присоединяя ион - образуют отрицательно заряженные галогениды. Хлор бром йод астат имеют степени гокисления +1 +3 +5 +7, фтор - с самой высокой электроотричательностью, не имеет + СО. F->at радиусы атома возрастают, уменьшается: энергия ионизации, сродство к электрону, электроотрицательность - неметалл свойства - ослабевают. Образуют двухатомные молекула Г2. в ряду F2-Cl2-Br2-I2 прочность связи убывает из за снижения плотности перекрывания валентных орбиталей с ростом гланого кв. числа. В этом же ряду увеличивается ван-дер-ваальсово взаимодействие (рост темп плавления) и снижается окислительная активность

Физические

Фтор - бледно-зеленый газ, температура плавления -219оС, кипения -188оС, в воде растворен быть не может, так как интенсивно с ней взаимодействует. Хлор - желто-зеленый газ, температура плавления -101оС, кипения -34оС, легко сжижается при 20оС и давлении 6 атм (0,6 Мпа), растворимость в воде при 20оС - 2,5 л в 1 л воды. Раствор хлора в воде практически бесцветен и называется хлорной водой. Бром - красно-бурая жидкость, температура плавления -70оС, кипения +59оС, растворимость в воде при 20оС равна 0,02 г в 100 г воды. Раствор брома в воде - бромная вода - бурого цвета. Иод - черно-фиолетовые с металлическим блеском кристаллы, плавятся при +113,6оС, температура кипения жидкого иода +185,5оС. Кристаллический иод легко возгоняется (сублимируется) - переходит из твердого в газообразное состояние. Растворимость в воде при 20оС равна 0,02 г в 100 г воды. Образующийся раствор светло-желтого цвета называется иодной водой. Значительно лучше, чем в воде, иод и бром растворяются в органических растворителях: четыреххлористом углероде, хлороформе, бензоле. Т. кипения/плавления с ряду F2-Cl2-Br2-I2 - -219/-188, -101/-34, -7/60, 113/185

Хим. свойства

Образуют кислородные соединения - оксиды и оксокислоты

Растворимы в спиртах бензоле простых эфирах

В водном растворе все кроме фтора диспропорционируют, равновесие смещается влево

Фтор окисляет воду

Образую галлогениды с металлами

Убывание окислительной активности: Н2 + Г2 =2НГ (фтор в темноте, хлор на свету, бром ещё и при нагреве, а йод - ещё и обратима)

Вытесняют из солец более слабые Г - хлор вытесняет бромиды и йодиды (Cl2 + 2KBr=Br2+2KCl)

Различная окисл. способность влияет на живые организмы - хлор и бром - отравляющие. а йод - антисептик

Применение:

Хлор - поливинилхлорид, хлорбензол и т.д. для отбеливания тканей, очищения воды, дезинфекции, а произвоные (KClO3) являются компонентами ракетного топлива. Бром - как краситель и лекарственный препарат. Иод - получение металлов высокой степени чистоты, как катализатор в орг синтезе, как антисептик и лекарство



Получение:

В природе эти элементы встречаются в основном в виде галогенидов (за исключением иода, который также встречается в виде иодата натрия или калия в месторождениях нитратов щелочных металлов). Поскольку многие хлориды, бромиды и иодиды растворимы в воде, то эти анионы присутствуют в океане и природных рассолах. Основным источником фтора является фторид кальция, который очень малорастворим и находится в осадочных породах (как флюорит CaF2). В промышленности хлор в основном получают электролизом водного раствора хлорида натрия в специальных электролизёрах. Основным способом получения простых веществ является окисление галогенидов Бром получают химическим окислением бромид-иона, находящегося в морской воде. Подобный процесс используется и для получения иода из природных рассолов, богатых I-. В качестве окислителя в обоих случаях используют хлор, обладающий более сильными окислительными свойствами, а образующиеся Br2 и I2 удаляются из раствора потоком воздуха. В природе встречаются следующие стабильные изотопы галогенов: фтора - 19F, хлора - 35Cl и 37Cl, брома - 79Br и 81Br, иода - 127I. Галогены в природе находятся только в виде соединений, причем в состав этих соединений галогены входят (за редчайшим исключением) только в степени окисления -1. Практическое значение имеют минералы фтора: CaF2 - плавиковый шпат, Na2AlF6 - криолит, Ca5F(PO4)3 - фторапатит и минералы хлора: NaCl - каменная соль (это же вещество - главный компонент, обуславливающий соленость морской воды), KСl - сильвин, MgCl2*KCl*6H2O - карналлит, KCl*NaCl - сильвинит. Бром в виде солей содержится в морской воде, в воде некоторых озер и в подземных рассолах. Соединения иода содержатся в морской воде, накапливаются в некоторых водрослях. Существуют незначительные залежи солей иода - KIO3 и KIO4 - В Чили и Боливии.

3. Растворимость . Галогены обладают некоторой растворимостью в воде, однако, как и следовало ожидать, из-за ковалентного характера связи XX и малого заряда растворимость их невелика. Фтор настолько активен, что оттягивает электронную пару от кислорода воды, при этом выделяется свободный O2 и образуются OF2 и HF. Хлор менее активен, но в реакции с водой получается некоторое количество HOCl и HCl. Гидраты хлора (например, Cl2*8H2O) могут быть выделены из раствора при охлаждении. Иод проявляет необычные свойства при растворении в различных растворителях. При растворении небольших количеств иода в воде, спиртах, кетонах и других кислородсодержащих растворителях образуется раствор коричневого цвета (1%-ный раствор I2 в спирте обычный медицинский антисептик). Молекулы галогенов неполярны, галогены хорошо растворяются в спиртах, бензоле, простых эфирах. Фтор: в воде растворен быть не может, так как интенсивно с ней взаимодействует.

Хлор: растворимость в воде при 20оС - 2,5 л в 1 л воды. Раствор хлора в воде практически бесцветен и называется хлорной водой.

Бром: растворимость в воде при 20оС равна 0,02 г в 100 г воды. Раствор брома в воде - бромная вода - бурого цвета.

Иод: Растворимость в воде при 20оС равна 0,02 г в 100 г воды. Образующийся раствор светло-желтого цвета называется иодной водой. Значительно лучше, чем в воде, иод и бром растворяются в органических растворителях: четыреххлористом углероде, хлороформе, бензоле. Взаимодействие галогенов с водой - сложный процесс, включающий растворение, образование сольватов и диспропорционирование.

Фтор в отличие от других галогенов воду окисляет:

2H2O + 2F2 = 4HF + O2.

Однако при насыщении льда фтором при -400С образуется соединение HFO. Можно отметить два типа взаимодействия молекул воды с молекулами галогенов. К первому относится процесс образования клатратов, например, 8Cl2. 46H2O при замораживании растворов. Молекулы галогена в клатратах занимают свободные полости в каркасе из молекул H2O, связанных между собой водородными связями. Ко второму типу можно отнести гетеролитическое расщепление и окислительно-восстановительное диспропорционированиесостав продуктов взаимодействия в системе Cl2+H2O: растворенный в воде хлор (он преобладает), HCl, HClO, HClO3. При насыщении хлором холодной воды (0-20оС) часть молекул Cl2 диспропорционирует:

Cl2 + H2O = HCl + HClO,

при этом кислотность раствора постепенно увеличивается. Бром и иод взаимодействуют с водой аналогично хлору.

4. Молекулы HХ полярны. Полярность количественно характеризуется величиной дипольного момента. Дипольные моменты убывают в ряду HF-HI. С точки зрения МО ЛКАО полярность определяется различием энергий взаимодействующих 1s-атомной орбитали водорода и ns-, np-орбиталей атома галогена. Как отмечалось, в ряду F-Cl-Br-I эта разница, а также степень локализации электронов на атомах галогена и полярность молекул НХ уменьшаются. В стандартных условиях галогеноводороды - газы. С ростом массы и размеров молекул усиливается межмолекулярное взаимодействие и, как следствие, повышаются температуры плавления (Тпл) и кипения (Ткип). Однако для HF величины Тпл и Ткип, полученные экстраполяцией в ряду однотипных соединений HF-HCl-HBr-HI, оказываются существенно ниже, чем экспериментальные (табл.4). Аномально высокие температуры плавления и кипения объясняются усилением межмолекулярного взаимодействия за счет образования водородных связей между молекулами HF. Твердый HF состоит из зигзагообразных полимерных цепей. В жидком и газообразном HF вплоть до 60оС присутствуют полимеры от (HF)2 до (HF)6. Для HCl, HBr, HI образование водородных связей не характерно из-за меньшей электроотрицательности атома галогена. Растворимость в воде. Благодаря высокой полярности газообразные НХ хорошо растворимы в воде *) , например, в 1 объеме воды при 0оС растворяется 507 объемов HCl или 612 объемов HBr. При охлаждении из водных растворов выделены кристаллические гидраты HF. H2O, HCl. 2H2O и т.д., которые построены из соответствующих галогенидов оксония. В водных растворах НХ устанавливается протолитическое равновесие

HX + HOH = + H3O+ (X = F, Cl, Br, I), (1),

то есть эти растворы являются кислотами.

Водные растворы HCl, HBr и HI ведут себя как сильные кислоты. В разбавленных водных растворах HF является слабой кислотой (рКа = 3.2), что связано с высокой энергией связи H-F по сравнению с энергией связи H-О в молекуле воды. Однако при повышении концентрации HF выше 1 М сила кислоты увеличивается. Особенностью фтороводорода и плавиковой кислоты является способность разъедать стекло.

Восстановительные свойства галогеноводородов. С увеличением размера и уменьшением энергии ионизации атома галогена восстановительная способность в ряду HF-HCl-HBr-HI увеличивается (табл.5). Например, плавиковая HF и соляная HCl кислоты с концентрированной серной кислотой не взаимодействуют, а HBr и HI ею окисляются:

2HBr + H2SO4(конц) = Br2 + SO2 + 2H2O

8HI + H2SO4(конц) = 4I2 + H2S + 4H2O.

Сжигание хлора с водородом является основным промышленным способом получения HCl. Бром и иод реагируют с водородом более спокойно, однако выход невелик, поскольку равновесие Н2 + Х2 = 2НХ (Х = Br, I) смещено влево. Газообразные НХ выделяются при действии нелетучих сильных кислот на твердые ионные галогениды металлов: (на практике пользуются 70-85%-ным р-ром серной к-ты, т.к. реакция идет на поверхности кристаллов соли. Если брать конц. к-ту, осаждается NaHSO4. При использовании разб серной к-ты значительная часть HCl остается в р-ре. Выделяющийся HCL сушат над конц. серной к-той. Оксид фосфора для этого непригоден так как взаимодействует с HCL: P4O10 + 12HCL = 4POCL3 + 6H2O

CaF2 + H2SO4(конц) = CaSO4 + 2HF

NaCl + H2SO4(конц) = NaHSO4 + HCl

Большинство галогенидов неметаллов относятся к соединениям с ковалентной связью и гидролизуются с выделением соответствующего галогеноводорода, например,

SiCl4 + 4H2O = SiO2. 2H2O + 4HCl

Галогеноводороды образуются также при галогенировании органических соединений, например:

RH +Cl2 = RCl + HCl

Соляную кислоту получают растворением газообразного хлороводорода в воде. Хлороводород получают сжиганием водорода в хлоре. В лабораторных условиях используется разработанный ещё алхимиками способ, заключающийся в действии крепкой серной кислоты на поваренную соль:

NaCl + H2SO4(конц.) (150 °C) > NaHSO4 + HCl^

При температуре выше 550 °C и избытке поваренной соли возможно взаимодействие:

NaCl + NaHSO4 (>550 °C) = Na2SO4 + HCl^

Хлороводород прекрасно растворим в воде. Так, при 0 °C 1 объём воды может поглотить 507 объёмов HCl, что соответствует концентрации кислоты 45 %. Однако при комнатной температуре растворимость HCl ниже, поэтому на практике обычно используют 36-процентную соляную кислоту.

Промышленность.

Применяют в гидрометаллургии и гальванопластике (травление, декапирование), для очистки поверхности металлов при паянии и лужении, для получения хлоридов цинка, марганца, железа и др. металлов. В смеси с ПАВ используется для очистки керамических и металлических изделий (тут необходима ингибированная кислота) от загрязнений и дезинфекции. В пищевой промышленности зарегистрирована в качестве регулятора кислотности, пищевой добавки E507. Применяется для изготовления зельтерской (содовой) воды.

Медицина

Составная часть желудочного сока; разведенную соляную кислоту ранее назначали внутрь главным образом при заболеваниях, связанных с недостаточной кислотностью желудочного сока.

5. Гипогалогенитные кислотыHXO

Гипогалогенитные кислоты являются слабыми. Растворы гипогалогенитов имеют сильно щелочную реакцию, а пропускание через них СО2 приводит к образованию кислоты, например,

NaClO + H2O + CO2 = NaHCO3 + HClO.

Высокую окислительную способность гипохлоритов иллюстрируют следующие реакции:

NaСlO +2NaI + H2O = NaCl + I2 + 2NaOH

2NaClO + MnCl2 + 4NaOH = Na2MnO4 + 4NaCl + 2H2O.

Из оксокислот HXO2 известны лишь хлористая кислота HClO2. Она не образуется при диспропорционировании HClO. Водные растворы HClO2 получают обработкой Вa(ClO2)2 серной кислотой с последующим отфильтровыванием осадка BaSO4:

Оксокислоты HXO3 более устойчивы, чем HXO (см. реакции 1, 3-5, 7). Хлорноватая HClO3 кислота получены в растворах с концентрацией ниже 30%. Растворы HClO3 получают действием разбавленной H2SO4 на растворы cоответствующих солей, например,

При концентрации растворов выше 30% кислоты HBrO3 и HClO3 разлагаются со взрывом. Водные растворы HXO3 являются сильными кислотами, соли более устойчивы к нагреванию, чем соответствующие кислоты. В частности, некоторые из иодатов встречаются в природе в виде минералов, например, лаутарит NaIO3. При нагревании твердого КСIO3 до 500оС возможно диспропорционирование 4KClO3 3KClO4 +KCl,

Хлорная кислота (Тпл.= -102оС, Ткип.= 90оС) получена в индивидуальном состоянии нагреванием твердой соли КClO4 с концентрированной H2SO4 с последующей отгонкой при пониженном давлении:

КClO4 ,тв.+ H2SO4,конц HClO4 + KHSO4

HClO4 легко взрывается при контакте с органическими веществами. Хлорная кислота - одна из сильных кислот. Бесцветная концентрированная HClO4 даже при комнатной температуре синтеза темнеет из-за образования оксидов хлора с более низкими степенями окисления. Устойчивость солей выше, чем соответствующих оксокислот HXO4. Кристаллы солей, например, KClO4, построены из ионов K+ и ClО, электростатическое взаимодействие которых увеличивает энергию кристаллической решетки и повышает стабильность.

6. Гипогалогенитные кислоты HXO известны лишь в разбавленных водных растворах. Их получают взаимодействием галогена с суспензией оксида ртути:

2X2 + 2HgO + H2O = HgO. HgХ2+2HOX.

Следует отметить особенность соединения HOF. Оно образуется при пропускании фтора над льдом при -400С и конденсацией образующегося газа при температуре ниже 0оС.

F2,газ + H2Oлед HOF + HF

HOF, в частности, не образует солей, а при его взаимодействии с водой появляется пероксид водорода:

HOF + H2O = H2O2 + HF

Гипогалогенитные кислоты являются слабыми. При переходе от хлора к иоду по мере увеличения радиуса и уменьшения

электроотрицательности атом галогена слабее смещает электронную плотность от атома кислорода и, тем самым, слабее поляризует связь Н-О. В результате кислотные свойства в ряду HClO - HBrO - HIO ослабляютсяИз оксокислот HXO2 известны лишь хлористая кислота HClO2. Она не образуется при диспропорционировании HClO. Водные растворы HClO2 получают обработкой Вa(ClO2)2 серной кислотой с последующим отфильтровыванием осадка BaSO4:

Ba(ClO2)2 + H2SO4 = BaSO4 + 2HClO2.

HClO2 является кислотой средней силы: рКа = 2.0 (табл.7). Хлориты используют для отбеливания. Их получают мягким восстановлением ClO2 в щелочной среде:

2СlO2 + Ba(OH)2 + H2O2 = Ba(ClO2)2 + 2H2O + O2

2СlO2 + PbO + 2NaOH = PbO2 + 2NaClO2 + H2O.

Бромит бария удалось синтезировать по реакции:

Ba(BrO)2 + 2Br2 + 4KOH Ba(BrO2)2 +4KBr + 2Н2О.

Оксокислоты HXO3 более устойчивы, чем HXO (см. реакции 1, 3-5, 7 в 9.3). Хлорноватая HClO3 и бромноватая HBrO3 кислоты получены в растворах с концентрацией ниже 30%, а твердая йодноватая HIO3 выделена как индивидуальное вещество.

Растворы HClO3 и HBrO3 получают действием разбавленной H2SO4 на растворы cоответствующих солей, например,

Ba(ClO3)2 + H2SO4 = 2HClO3 + BaSO4 .

Водные растворы HXO3 являются сильными кислотами. В ряду HClO3-HBrO3-HIO3 наблюдается некоторое уменьшение силы кислот (табл.10). Это можно объяснить тем, что с ростом размера атома галогена прочность кратной связи О уменьшается, что приводит к уменьшению полярности связи H-O и уменьшению легкости отрыва от нее водорода молекулами воды. метаиодная кислота HIO4 и некоторые ее соли известны, иод(VII) из-за роста радиуса в ряду Сl-Br-I и повышения его координационного числа образует, главным образом, гидроксопроизводные состава (HO)5IO H5IO6, в которых атом иода октаэдрически окружен атомом кислорода и пятью гидроксильными группами

Бромная кислота HBrO4 известна лишь в растворах (не выше 6М), получаемых подкислением перброматов NaBrO4, которые, в свою очередь, удалось синтезировать окислением броматов фтором в разбавленных щелочных растворах (броматы можно окислить до перброматов с помощью XeF2 или электролитически) :

NaBrO3 + F2 + 2NaOH = NaBrO4 + 2NaF +H2O .

Хлорная кислота - одна из сильных кислот. По силе к ней приближается бромная кислота.Иодная кислота существует в нескольких формах, главными из которых являются ортоиодная H5IO6 и метаиодная HIO4 кислоты. Ортоиодная кислота образуется в виде бесцветных кристаллов при осторожном упаривании раствора, образующегося при обменной реакции

Ba3(H2IO6)2 + 3H2SO4 = 3BaSO4 + 2H5IO6.

Устойчивость солей выше, чем соответствующих оксокислот HXO4. Кристаллы солей, например, KClO4, построены из ионов K+ и ClО,

электростатическое взаимодействие которых увеличивает энергию кристаллической решетки и повышает стабильность.

8. В водородных оединениях Н2Э элементы имеют степень окисления (-2)Темодинамическая активность уменьшается от Н2О до Н2Те (по эн. Гибса) В обычных условиях - это ядовитые газы с неприятным запахом. Т. плавл. в ряду Н2S H2Se H2Te увелич, т.к. с увеличением числа электронов и размеров молекул усиливается ван-дер-ваальсово взаим. Вода имеет аномально выскоие темп. кипения и плавления для этой группы, т.к. за счёт водородных связей молекул взаим между её молекулами оч сильное. В расворах ведут себя как двухосн кислоты. Сила кислот в ряду от Н2О до Н2Те возрастает. Восстановительная способность тоже возрастает из-за увеличенияэтома происходит ослабление связей H - Э.